ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 153]      



Задача 56931

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6+
Классы: 9

Внутри треугольника ABC взята точка X. Прямая AX пересекает описанную окружность в точке A1. В сегмент, отсекаемый стороной BC, вписана окружность, касающаяся дуги BC в точке A1, а стороны BC — в точке A2. Точки B2 и C2 определяются аналогично. Докажите, что прямые AA2, BB2 и CC2 пересекаются в одной точке.
Прислать комментарий     Решение


Задача 56932

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6+
Классы: 9

а) На сторонах BC, CA и AB равнобедренного треугольника ABC с основанием AB взяты точки A1, B1 и C1 так, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Докажите, что

$\displaystyle {\frac{AC_1}{C_1B}}$ = $\displaystyle {\frac{\sin ABB_1\sin CAA_1}{\sin BAA_1\sin CBB_1}}$.


б) Внутри равнобедренного треугольника ABC с основанием AB взяты точки M и N так, что  $ \angle$CAM = $ \angle$ABN и  $ \angle$CBM = $ \angle$BAN. Докажите, что точки C, M и N лежат на одной прямой.
Прислать комментарий     Решение

Задача 56933

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6+
Классы: 9

В треугольнике ABC проведены биссектрисы AA1, BB1 и CC1. Биссектрисы AA1 и CC1 пересекают отрезки C1B1 и B1A1 в точках M и N. Докажите, что  $ \angle$MBB1 = $ \angle$NBB1.
Прислать комментарий     Решение


Задача 53897

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Теоремы Чевы и Менелая ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены высоты AH, BK и CL. Докажите, что  AK·BL·CH = AL·BH·CK = HK·KL·LH.

Прислать комментарий     Решение

Задача 86935

Темы:   [ Свойства сечений ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

Точка M – середина ребра AD тетраэдра ABCD . Точка N лежит на продолжении ребра AB за точку B , точка K – на продолжении ребра AC за точку C , причём BN = AB и CK = 2AC . Постройте сечение тетраэдра плоскостью MNK . В каком отношении эта плоскость делит рёбра DB и DC ?
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 153]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .