ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 57469

Тема:   [ Неравенства для площади треугольника ]
Сложность: 5+
Классы: 9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1. Докажите, что площадь одного из треугольников  AB1C1, A1BC1, A1B1C не превосходит:
а) SABC/4;
б)  SA1B1C1.
Прислать комментарий     Решение


Задача 57466

Тема:   [ Неравенства для площади треугольника ]
Сложность: 7
Классы: 9

Пусть a, b, c и a', b', c' — длины сторон треугольников ABC и A'B'C', S и S' — их площади. Докажите, что

a2(- a'2 + b'2 + c'2) + b2(a'2 - b'2 + c'2) + c2(a'2 + b'2 - c'2)$\displaystyle \ge$16SS',

причём равенство достигается тогда и только тогда, когда эти треугольники подобны (Пидо).
Прислать комментарий     Решение

Задача 108962

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Неравенства для площади треугольника ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9,10

Лист железа треугольной формы весит 900 г.
Доказать, что любая прямая, проходящая через его центр тяжести, делит треугольник на части, каждая из которых весит не менее 400 г.

Прислать комментарий     Решение

Задача 64987

Темы:   [ Неравенства с биссектрисами ]
[ Неравенства для площади треугольника ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Применение тригонометрических формул (геометрия) ]
[ Неравенство Коши ]
Сложность: 4
Классы: 10,11

Автор: Рожкова М.

Докажите, что для любого неравнобедренного треугольника   ,   где l1, l2 – наибольшая и наименьшая биссектрисы треугольника, S – его площадь.

Прислать комментарий     Решение

Задача 61170

Темы:   [ Геометрические интерпретации в алгебре ]
[ Многочлены (прочее) ]
[ Формула Герона ]
[ Неравенства для площади треугольника ]
Сложность: 4
Классы: 10,11

Пусть x, y, z – положительные числа и  xyz(x + y + z) = 1.  Найдите наименьшее значение выражения  (x + y)(x + z).

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .