ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 304]      



Задача 78541

Темы:   [ Индукция (прочее) ]
[ Задачи на смеси и концентрации ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В n мензурок налиты n разных жидкостей, кроме того, имеется одна пустая мензурка. Можно ли за конечное число операций составить равномерные смеси в каждой мензурке, то есть сделать так, чтобы в каждой мензурке было равно 1/n от начального количества каждой жидкости, и при этом одна мензурка была бы пустой. (Мензурки одинаковые, но количества жидкостей в них могут быть разными; предполагается, что можно отмерять любой объём жидкости.)

Прислать комментарий     Решение

Задача 79396

Темы:   [ Индукция (прочее) ]
[ Четность и нечетность ]
[ Неравенства с модулями ]
Сложность: 4-
Классы: 8,9,10

Автор: Ненашев С.

Натуральные числа a1, a2, ..., an таковы, что каждое не превышает своего номера  (ak ≤ k)  и сумма всех чисел – чётное число.
Доказать, что одна из сумм  a1 ± a2 ± ... ± an  равна нулю.

Прислать комментарий     Решение

Задача 60280

Темы:   [ Индукция (прочее) ]
[ Рекуррентные соотношения ]
[ Тождественные преобразования ]
Сложность: 4
Классы: 8,9,10

Числовая последовательность  A1, A2, ..., An, ...  определена равенствами   A1 = 1,   A2 = – 1,   An = – An–1 – 2An–2   (n ≥ 3).
Докажите, что при любом натуральном n число     является полным квадратом.

Прислать комментарий     Решение

Задача 97937

Темы:   [ Индукция (прочее) ]
[ Иррациональные неравенства ]
Сложность: 4
Классы: 8,9,10

Докажите, что для любого натурального  n ≥ 2  справедливо неравенство:   .

Прислать комментарий     Решение

Задача 98100

Темы:   [ Индукция (прочее) ]
[ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Отношение порядка ]
Сложность: 4
Классы: 8,9,10

В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 304]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .