ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 125]      



Задача 107703

Темы:   [ Упаковки ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 2+
Классы: 6,7,8

Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
а) по 2 монеты;   б) по 3 монеты;  в) по 4 монеты;
г) по 5 монет;   д) по 6 монет;   е) по 7 монет?
(Разрешается класть монеты одну на другую.) В тех случаях, когда это возможно, нарисуйте, как это сделать. В остальных случаях докажите, что так расположить монеты нельзя.
Прислать комментарий     Решение


Задача 35238

Темы:   [ Раскраски ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3-
Классы: 7,8,9

Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.
Прислать комментарий     Решение


Задача 107821

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3-
Классы: 7,8,9

В некоторых клетках шахматной доски стоят фигуры. Известно, что на каждой горизонтали стоит хотя бы одна фигура, причём в разных горизонталях – разное число фигур. Докажите, что всегда можно отметить 8 фигур так, чтобы в каждой вертикали и каждой горизонтали стояла ровно одна отмеченная фигура.

Прислать комментарий     Решение

Задача 88235

Темы:   [ Замощения костями домино и плитками ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 5,6,7,8

Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых многоугольников; пять кусков затерялись, остался один кусок в форме правильного восьмиугольника (см. рисунок). Можно ли по одному этому восьмиугольнику восстановить исходный квадрат?

Прислать комментарий     Решение

Задача 32135

Темы:   [ Системы точек и отрезков (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3
Классы: 7,8,9

В плоскости отмечена 101 точка, не все они лежат на одной прямой. Через каждую пару отмеченных точек красным карандашом проводится прямая. Докажите, что на плоскости существует точка, через которую проходит не меньше 11 красных прямых.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .