ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 361]      



Задача 21977

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что в любой компании из 5 человек есть двое, имеющие одинаковое число знакомых в этой компании.

Прислать комментарий     Решение

Задача 21986

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

Прислать комментарий     Решение

Задача 21987

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
[ Разложение на множители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 6,7,8

Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

Прислать комментарий     Решение

Задача 21990

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 6,7,8

В клетках таблицы 3×3 расставлены числа –1, 0, 1. Докажите, что какие-то две из 8 сумм по всем строкам, всем столбцам и двум главным диагоналям будут равны.

Прислать комментарий     Решение

Задача 23304

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 6,7,8

Можно ли в таблице 6×6 расставить числа 0, 1 и –1 так, чтобы все суммы чисел по вертикалям, горизонталям и двум главным диагоналям были различны?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 361]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .