ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 58051

Тема:   [ Наименьший или наибольший угол ]
Сложность: 5
Классы: 8,9

Внутри остроугольного треугольника взята точка P. Докажите, что наибольшее из расстояний от точки P до вершин этого треугольника меньше удвоенного наименьшего из расстояний от P до его сторон.
Прислать комментарий     Решение


Задача 58052

Тема:   [ Наименьший или наибольший угол ]
Сложность: 6
Классы: 8,9

а) Длины биссектрис треугольника не превосходят 1. Докажите, что его площадь не превосходит 1/$ \sqrt{3}$.
б) На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1. Докажите, что если длины отрезков AA1, BB1 и CC1 не превосходят 1, то площадь треугольника ABC не превосходит 1/$ \sqrt{3}$.
Прислать комментарий     Решение


Задача 107674

Темы:   [ Признаки и свойства параллелограмма ]
[ Наименьший или наибольший угол ]
[ Общие четырехугольники ]
Сложность: 2+
Классы: 7,8,9

Из всякого ли выпуклого четырехугольника можно вырезать параллелограмм, три вершины которого совпадают с тремя вершинами этого четырехугольника?
Прислать комментарий     Решение


Задача 35094

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Наименьший или наибольший угол ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 8,9,10

На окружности отмечено n точек, причём известно, что для каждых двух отмеченных точек одна из дуг, соединяющих их, имеет величину, меньшую 120°. Докажите, что все точки лежат на одной дуге величиной 120°.

Прислать комментарий     Решение

Задача 105048

Темы:   [ Разные задачи на разрезания ]
[ Наименьший или наибольший угол ]
Сложность: 3+
Классы: 7,8,9

Покажите как любой четырехугольник разрезать на три трапеции (параллелограмм тоже можно считать трапецией).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .