ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 171]      



Задача 58231

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 6
Классы: 7,8

Разрежьте квадрат на 8 остроугольных треугольников.
Прислать комментарий     Решение


Задача 58232

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 6
Классы: 7,8

Можно ли какой-нибудь невыпуклый 5-угольник разрезать на два равных 5-угольника?
Прислать комментарий     Решение


Задача 58233

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 6
Классы: 7,8

Разрежьте произвольный тупоугольный треугольник на 7 остроугольных.
Прислать комментарий     Решение


Задача 58234

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 6
Классы: 7,8

Разрежьте разносторонний треугольник на 7 равнобедренных, три из которых равны.
Прислать комментарий     Решение


Задача 109510

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательная раскраска (прочее) ]
[ Геометрическая прогрессия ]
[ Процессы и операции ]
Сложность: 6
Классы: 9,10,11

Докажите, что существует такое натуральное число n , что если правильный треугольник со стороной n разбить прямыми, параллельными его сторонам, на n2 правильных треугольников со стороной 1, то среди вершин этих треугольников можно выбрать 1993n точек, никакие три из которых не являются вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного треугольника).
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .