ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 171]      



Задача 115780

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Теорема синусов ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Какие треугольники можно разрезать на три треугольника с равными радиусами описанных окружностей?

Прислать комментарий     Решение

Задача 116662

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 5,6,7

План дворца шаха – это квадрат размером 6×6, разбитый на комнаты размером 1×1. В середине каждой стены между комнатами есть дверь. Шах сказал своему архитектору: "Cломай часть стен так, чтобы все комнаты стали размером 2×1, новых дверей не появилось, а путь между любыми двумя комнатами проходил не более, чем через N дверей". Какое наименьшее значение N должен назвать шах, чтобы приказ можно было выполнить?

Прислать комментарий     Решение

Задача 116975

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 5,6,7

Автор: Шноль Д.Э.

Дима разрезал картонный квадрат 8×8 по границам клеток на шесть частей (см. рисунок). Оказалось, что квадрат остался крепким: если положить его на стол и потянуть (вдоль стола) за любую часть в любом направлении, то весь квадрат потянется вместе с этой частью.

Покажите, как разрезать такой квадрат по границам клеток не менее чем на 27 частей, чтобы квадрат оставался крепким и в каждой части было не более 16 клеток.

Прислать комментарий     Решение

Задача 58168

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Раскраски ]
[ Делимость чисел. Общие свойства ]
[ Многоугольники (прочее) ]
Сложность: 4+
Классы: 8,9,10

На рис. изображен шестиугольник, разбитый на чёрные и белые треугольники так, что каждые два треугольника имеют либо общую сторону (и тогда они окрашены в разные цвета), либо общую вершину, либо не имеют общих точек, а каждая сторона шестиугольника является стороной одного из черных треугольников. Докажите, что десятиугольник разбить таким образом нельзя.

Прислать комментарий     Решение

Задача 64358

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция (прочее) ]
[ Инварианты ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 9,10,11

На плоскости нарисован квадрат, стороны которого горизонтальны и вертикальны. В нём проведены несколько отрезков, параллельных сторонам, причём никакие два отрезка не лежат на одной прямой и не пересекаются по точке, внутренней для обоих отрезков. Оказалось, что отрезки разбили квадрат на прямоугольники, причём каждая вертикальная прямая, пересекающая квадрат и не содержащая отрезков разбиения, пересекает ровно k прямоугольников разбиения, а каждая горизонтальная прямая, пересекающая квадрат и не содержащая отрезков разбиения – ровно l прямоугольников. Каким могло оказаться количество прямоугольников разбиения?

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .