ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 259]      



Задача 53616

Темы:   [ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 2-
Классы: 8,9

В треугольник ABC со сторонами  AB = 5,  BC = 7,  CA = 10  вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK.

Прислать комментарий     Решение

Задача 56684

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 2
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Докажите, что если из точки M отрезок AO виден под углом  90o, то отрезки OB и OC видны из нее под равными углами.
Прислать комментарий     Решение


Задача 52885

Темы:   [ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120. Найдите расстояние от центра до общей точки касательных.

Прислать комментарий     Решение


Задача 52541

Темы:   [ Две касательные, проведенные из одной точки ]
[ Правильный (равносторонний) треугольник ]
Сложность: 2+
Классы: 8,9

AB и AC — касательные к одной окружности, $ \angle$BAC = 60o, длина ломаной BAC равна 1. Найдите расстояние между точками касания B и C.

Прислать комментарий     Решение


Задача 55543

Темы:   [ Две касательные, проведенные из одной точки ]
[ Правильный (равносторонний) треугольник ]
Сложность: 2+
Классы: 8,9

Окружность, вписанная в треугольник ABC, касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что AC1 = BA1 = CB1. Докажите, что треугольник ABC — правильный.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 259]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .