ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 385]      



Задача 35717

Тема:   [ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Из произвольной точки круглого бильярдного стола пущен шар. Докажите, что внутри стола найдётся такая окружность, что траектория шара её ни разу не пересечёт.
Прислать комментарий     Решение


Задача 52535

Темы:   [ Диаметр, основные свойства ]
[ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 2+
Классы: 8,9

С помощью циркуля и линейки через данную внутри окружности точку проведите хорду, которая делилась бы этой точкой пополам.

Прислать комментарий     Решение


Задача 52536

Темы:   [ Хорды и секущие (прочее) ]
[ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 2+
Классы: 8,9

Постройте окружность с центром в данной точке на стороне данного острого угла, которая на другой стороне угла отсекала бы хорду данной длины.

Прислать комментарий     Решение


Задача 52879

Темы:   [ Диаметр, хорды и секущие ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

AB и CD – две параллельные хорды, расположенные по разные стороны от центра O окружности радиуса 15.  AB = 18,  CD = 24.
Найдите расстояние между хордами.

Прислать комментарий     Решение

Задача 52880

Темы:   [ Диаметр, хорды и секущие ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

Две параллельные хорды AB и CD расположены по одну сторону от центра O окружности радиуса 30.  AB = 48,  CD = 36.
Найдите расстояние между хордами.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 385]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .