ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 65014

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10

В выпуклом четырёхугольнике ABCD  AB = BC.  На диагонали BD выбрана такая точка K, что  ∠AKB + ∠BKC = ∠A + ∠C.
Докажите, что  AK·CD = KC·AD.

Прислать комментарий     Решение

Задача 65081

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD углы B и D равны,  CD = 4BC,  а биссектриса угла A проходит через середину стороны CD.
Чему может быть равно отношение  AD : AB?

Прислать комментарий     Решение

Задача 66316

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11

Автор: Соколов А.

Дан выпуклый четырёхугольник ABCD. Пусть ωA, ωB, ωC, ωD – описанные окружности треугольников BCD, ACD, ABD, ABC соответственно. Обозначим через XA произведение степени точки A относительно ωA на площадь треугольника BCD. Аналогично определим XB, XC, XD. Докажите, что  XA + XB + XC + XD = 0.

Прислать комментарий     Решение

Задача 64472

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теорема косинусов ]
[ Теорема Птолемея ]
Сложность: 4
Классы: 9,10,11

Дан вписанный четырёхугольник, острый угол между диагоналями которого равен φ. Докажите, что острый угол между диагоналями любого другого четырёхугольника с теми же длинами сторон (идущими в том же порядке) меньше φ.

Прислать комментарий     Решение

Задача 64610

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вписанные четырехугольники (прочее) ]
[ Углы между биссектрисами ]
[ Вписанный угол равен половине центрального ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике ABCD нет параллельных сторон. Углы, образованные сторонами четырёхугольника с диагональю AC, равны (в каком-то порядке) 16°, 19°, 55° и 55°. Каким может быть острый угол между диагоналями AC и BD?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .