ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 58451

 [Теорема Паскаля]
Темы:   [ Теорема Паскаля ]
[ Применение проективных преобразований, сохраняющих окружность ]
[ Теоремы Чевы и Менелая ]
[ Две пары подобных треугольников ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5-
Классы: 9,10,11

В окружность S вписан шестиугольник ABCDEF. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой.

Прислать комментарий     Решение

Задача 57105

 [Теорема Паскаля]
Темы:   [ Теорема Паскаля ]
[ Угол между касательной и хордой ]
Сложность: 6
Классы: 8,9,10

Докажите, что точки пересечения противоположных сторон (если эти стороны не параллельны) вписанного шестиугольника лежат на одной прямой (Паскаль).
Прислать комментарий     Решение


Задача 57106

Тема:   [ Теорема Паскаля ]
Сложность: 6+
Классы: 9

Точка M лежит на описанной окружности треугольника ABCR — произвольная точка. Прямые AR, BR и CR пересекают описанную окружность в точках A1, B1 и C1. Докажите, что точки пересечения прямых MA1 и BCMB1 и CAMC1 и AB лежат на одной прямой, проходящей через точку R.
Прислать комментарий     Решение


Задача 57107

Тема:   [ Теорема Паскаля ]
Сложность: 6+
Классы: 9

Даны треугольник ABC и некоторая точка T. Пусть P и Q — основания перпендикуляров, опущенных из точки T на прямые AB и AC соответственно, a R и S — основания перпендикуляров, опущенных из точки A на прямые TC и TB соответственно. Докажите, что точка пересечения X прямых PR и QS лежит на прямой BC.
Прислать комментарий     Решение


Задача 57108

Тема:   [ Теорема Паскаля ]
Сложность: 6+
Классы: 9

В треугольнике ABC проведены высоты AA1 и BB1 и биссектрисы AA2 и BB2; вписанная окружность касается сторон BC и AC в точках A3 и B3. Докажите, что прямые  A1B1, A2B2 и A3B3 пересекаются в одной точке или параллельны.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .