Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 32]
|
|
Сложность: 3+ Классы: 10,11
|
Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла.
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан выпуклый 100-угольник. Докажите, что можно отметить такие 50 точек внутри этого многоугольника, что каждая вершина будет лежать на прямой, проходящей через какие-то две из отмеченных точек.
|
|
Сложность: 3+ Классы: 7,8,9
|
В вершинах правильного девятиугольника расставляют числа 1, 2, 3, 4, 5, 6, 7, 8, 9, после чего на каждой диагонали пишут произведение чисел, стоящих на её концах. Можно ли так расставить числа в вершинах, чтобы все числа на диагоналях были разные?
|
|
Сложность: 4- Классы: 8,9,10
|
Внутри окружности расположен равносторонний N-угольник. Каждую его сторону продлевают в обе стороны до пересечения с окружностью, получая по два новых отрезка, расположенных вне многоугольника. Затем некоторые из 2N полученных отрезков красятся в красный цвет, а остальные – в синий цвет. Докажите, что можно раскрасить эти отрезки так, чтобы сумма длин красных отрезков равнялась сумме длин синих.
|
|
Сложность: 4- Классы: 8,9,10
|
В выпуклом n-угольнике провели несколько диагоналей так, что ни в какой точке внутри многоугольника не пересеклись три или более из них. Оказалось, что в результате многоугольник разбился на треугольники. Каково наибольшее возможное число треугольников?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 32]