ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 101]      



Задача 56773

Тема:   [ Площадь четырехугольника ]
Сложность: 5
Классы: 9

На каждой стороне параллелограмма взято по точке. Площадь четырехугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырехугольника параллельна стороне параллелограмма.
Прислать комментарий     Решение


Задача 56774

Тема:   [ Площадь четырехугольника ]
Сложность: 5
Классы: 9

Точки K и M — середины сторон AB и CD выпуклого четырехугольника ABCD, точки L и N расположены на сторонах BC и AD так, что KLMN — прямоугольник. Докажите, что площадь четырехугольника ABCD вдвое больше площади прямоугольника KLMN.
Прислать комментарий     Решение


Задача 56795

Тема:   [ Площадь четырехугольника ]
Сложность: 5
Классы: 9

Докажите, что площадь четырехугольника, диагонали которого не перпендикулярны, равна  tg$ \varphi$ . | a2 + c2 - b2 - d2|/4, где a, b, c и d — длины последовательных сторон, $ \varphi$ — угол между диагоналями.
Прислать комментарий     Решение


Задача 56775

Тема:   [ Площадь четырехугольника ]
Сложность: 6
Классы: 9

Квадрат разделен на четыре части двумя перпендикулярными прямыми, точка пересечения которых лежит внутри его. Докажите, что если площади трех из этих частей равны, то равны и площади всех четырех частей.
Прислать комментарий     Решение


Задача 56796

Тема:   [ Площадь четырехугольника ]
Сложность: 6
Классы: 9

а) Докажите, что площадь выпуклого четырехугольника ABCD вычисляется по формуле

S2 = (p - a)(p - b)(p - c)(p - d )- abcd cos2((B + D)/2),

где p — полупериметр, a, b, c, d — длины сторон.
б) Докажите, что если четырехугольник ABCD вписанный, то  S2 = (p - a)(p - b)(p - c)(p - d ).
в) Докажите, что если четырехугольник ABCD описанный, то  S2 = abcd sin2((B + D)/2).
Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .