ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 99]      



Задача 108607

Темы:   [ Перегруппировка площадей ]
[ Шестиугольники ]
Сложность: 3
Классы: 8,9

В выпуклом шестиугольнике ABCDEF отрезки AB и CF, CD и BE, EF и AD попарно параллельны.
Докажите, что площади треугольников ACE и BFD равны.

Прислать комментарий     Решение

Задача 108612

Темы:   [ Перегруппировка площадей ]
[ Концентрические окружности ]
Сложность: 3
Классы: 8,9

Учитель продиктовал классу задание, которое каждый ученик выполнил в своей тетради. Вот это задание:

  Нарисуйте две концентрические окружности радиусов 1 и 10. К малой окружности проведите три касательные так, чтобы их точки пересечения A, B и C лежали внутри большой окружности. Измерьте площадь S треугольника ABC и площади SA, SB и SC трёх образовавшихся криволинейных треугольников с вершинами в точках A, B и C. Найдите  SA + SB + SC – S.

Докажите, что у всех учеников (если они правильно выполнили задание) получились одинаковые результаты.

Прислать комментарий     Решение

Задача 111628

Темы:   [ Перегруппировка площадей ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 8,9

В трапеции ABCD с меньшим основанием BC через точку B проведена прямая, параллельная CD и пересекающая диагональ AC в точке E . Сравните площади треугольников ABC и DEC .
Прислать комментарий     Решение


Задача 111631

Темы:   [ Перегруппировка площадей ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 8,9

Докажите, что площадь правильного восьмиугольника равна произведению длин наибольшей и наименьшей диагоналей.

Прислать комментарий     Решение

Задача 111632

Темы:   [ Перегруппировка площадей ]
[ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3
Классы: 8,9

Четыре вершины правильного двенадцатиугольника расположены в серединах сторон квадрата (см. рис.).

Докажите, что площадь заштрихованной части в 12 раз меньше площади двенадцатиугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 99]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .