ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 [Всего задач: 20]      



Задача 56785

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

На биссектрисе угла A треугольника ABC взята точка A1 так, что  AA1 = p - a = (b + c - a)/2, и через точку A1 проведена прямая la, перпендикулярная биссектрисе. Если аналогично провести прямые lb и lc, то треугольник ABC разобьется на части, среди которых четыре треугольника. Докажите, что площадь одного из этих треугольников равна сумме площадей трех других.
Прислать комментарий     Решение


Задача 35390

Темы:   [ Покрытия ]
[ Площадь (прочее) ]
Сложность: 2+
Классы: 9,10

На стол положили несколько одинаковых листов бумаги прямоугольной формы. Оказалось, что верхний лист покрывает больше половины площади каждого из остальных листов. Можно ли в таком случае воткнуть булавку так, чтобы она проколола все прямоугольники?
Прислать комментарий     Решение


Задача 116372

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Площадь (прочее) ]
[ Подобные треугольники (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 9,10,11

Прямоугольник площади 14 делит сторону квадрата в отношении 1 к 3 (см. рис). Найдите площадь квадрата.

Прислать комментарий     Решение

Задача 35447

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площадь (прочее) ]
Сложность: 3
Классы: 9,10

На какое минимальное число равновеликих треугольников можно разрезать квадрат 8*8 с вырезанной угловой клеткой?
Прислать комментарий     Решение


Задача 116678

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Площадь (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9,10

На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во владения этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.

Прислать комментарий     Решение

Страница: << 1 2 3 4 [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .