ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 229]      



Задача 57709

Тема:   [ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 2
Классы: 9

Докажите, что точка X лежит на прямой AB тогда и только тогда, когда $ \overrightarrow{OX}$ = t$ \overrightarrow{OA}$ + (1 - t)$ \overrightarrow{OB}$ для некоторого t и любой точки O.
Прислать комментарий     Решение


Задача 57710

Тема:   [ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 2
Классы: 9

Дано несколько точек и для некоторых пар (A, B) этих точек взяты векторы $ \overrightarrow{AB}$, причем в каждой точке начинается столько же векторов, сколько в ней заканчивается. Докажите, что сумма всех выбранных векторов равна  $ \overrightarrow{0}$.
Прислать комментарий     Решение


Задача 116986

Темы:   [ Векторы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 9,10,11

Автор: Фольклор

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

Прислать комментарий     Решение

Задача 57683

Тема:   [ Векторы сторон многоугольников ]
Сложность: 2+
Классы: 9

M1, M2,..., M6 — середины сторон выпуклого шестиугольника A1A2...A6. Докажите, что существует треугольник, стороны которого равны и параллельны отрезкам M1M2, M3M4, M5M6.
Прислать комментарий     Решение


Задача 57682

Темы:   [ Векторы сторон многоугольников ]
[ Векторы помогают решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3-
Классы: 8,9,10

Стороны треугольника T параллельны медианам треугольника T1. Докажите, что медианы треугольника T параллельны сторонам треугольника T1.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 229]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .