ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



Задача 57084

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 9

Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника.

Прислать комментарий     Решение

Задача 57086

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 9

Докажите, что сумма квадратов длин проекций сторон правильного n-угольника на любую прямую равна  ½ na²,  где a – сторона n-угольника.

Прислать комментарий     Решение

Задача 57525

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9,10

Среди всех треугольников, вписанных в данную окружность, найдите тот, у которого максимальна сумма квадратов длин сторон.
Прислать комментарий     Решение


Задача 78244

Темы:   [ Теория игр (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Скалярное произведение. Соотношения ]
Сложность: 4+
Классы: 9,10,11

Играют двое; один из них загадывает набор из целых чисел ( x1, x2,..., xn) -- однозначных, как положительных, так и отрицательных. Второму разрешается спрашивать, чему равна сумма a1x1 + ... + anxn, где (a1...an) -- любой набор. Каково наименьшее число вопросов, за которое отгадывающий узнает задуманный набор?
Прислать комментарий     Решение


Задача 109753

Темы:   [ Системы точек ]
[ Целочисленные решетки (прочее) ]
[ Скалярное произведение. Соотношения ]
[ Векторы помогают решить задачу ]
[ Рациональные и иррациональные числа ]
Сложность: 5-
Классы: 9,10,11

На плоскости отмечено несколько точек. Для любых трех из них существует декартова система координат (т.е. перпендикулярные оси и общий масштаб), в которой эти точки имеют целые координаты. Докажите, что существует декартова система координат, в которой все отмеченные точки имеют целые координаты.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .