ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 94]      



Задача 55697

Темы:   [ Перенос помогает решить задачу ]
[ Метод ГМТ ]
[ ГМТ и вписанный угол ]
Сложность: 4+
Классы: 8,9

Даны непересекающиеся хорды AB и CD некоторой окружности. С помощью циркуля и линейки постройте на этой окружности такую точку X, чтобы хорды AX и BX высекали на хорде CD отрезок EF, имеющий данную длину a.

Прислать комментарий     Решение


Задача 55704

Темы:   [ Перенос помогает решить задачу ]
[ Метод ГМТ ]
[ ГМТ и вписанный угол ]
Сложность: 5-
Классы: 8,9

Даны окружность, две точки P и Q этой окружности и прямая. Найдите на окружности такую точку M, чтобы прямые MP и MQ отсекали на данной прямой отрезок AB данной величины.

Прислать комментарий     Решение


Задача 98555

Темы:   [ Параллельный перенос (прочее) ]
[ Геометрия на клетчатой бумаге ]
[ Центральная симметрия помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Экстремальные свойства треугольника (прочее) ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются.
  а) Может ли площадь такого треугольника быть больше ½?
  б) Найдите наибольшую возможную площадь такого треугольника.

Прислать комментарий     Решение

Задача 109662

Темы:   [ Свойства параллельного переноса ]
[ Метод ГМТ ]
[ Правильный (равносторонний) треугольник ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5-
Классы: 9,10,11

На плоскости нарисовано некоторое семейство S правильных треугольников, получающихся друг из друга параллельными переносами, причем любые два треугольника пересекаются. Докажите, что найдутся три точки такие, что любой треугольник семейства S содержит хотя бы одну из них.
Прислать комментарий     Решение


Задача 115419

Темы:   [ Перенос помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Треугольник (построения) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
Сложность: 5-
Классы: 8,9,10

Треугольники ABC и A1B1C1 имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник A2B2C2, равный треугольнику A1B1C1 и такой, что прямые AA2, BB2 и CC2 будут параллельны?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 94]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .