ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]      



Задача 77881

Темы:   [ Свойства симметрий и осей симметрии ]
[ Основные свойства центра масс ]
Сложность: 4-
Классы: 8,9,10

Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке.
Прислать комментарий     Решение


Задача 86121

Темы:   [ Свойства симметрий и осей симметрии ]
[ Процессы и операции ]
[ Четырехугольники (прочее) ]
Сложность: 4-
Классы: 9,10,11

С выпуклым четырехугольником ABCD проделывают следующую операцию: одну из данных вершин меняют на точку, симметричную этой вершине относительно серединного перпендикуляра к диагонали (концом которой она не является), обозначив новую точку прежней буквой. Эту операцию последовательно применяют к вершинам A, B, C, D, A, B,... - всего n раз. Назовем четырехугольник допустимым, если его стороны попарно различны и после применения любого числа операций он остается выпуклым. Существует ли:
а) допустимый четырехугольник, который после n<5 операций становится равным исходному;
б) такое число n0, что любой допустимый четырехугольник после n=n0 операций становится равным исходному?
Прислать комментарий     Решение


Задача 110188

Темы:   [ Свойства симметрий и осей симметрии ]
[ Трапеции (прочее) ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.

Прислать комментарий     Решение

Задача 111812

Темы:   [ Свойства симметрий и осей симметрии ]
[ Шестиугольники ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Ромбы. Признаки и свойства ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9

Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.

Прислать комментарий     Решение

Задача 55618

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 4
Классы: 8,9

ABC — разносторонний остроугольный треугольник. Сколько на плоскости существует таких точек D, для которых множество {A, B, C, D} имеет ось симметрии?

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .