ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 35183

Тема:   [ Гомотетичные окружности ]
Сложность: 3
Классы: 9,10

Внутри угла расположены три окружности S1, S2, S3, каждая из которых касается двух сторон угла, причем окружность S2 касается внешним образом окружностей S1 и S3. Известно, что радиус окружности S1 равен 1, а радиус окружности S3 равен 9. Чему равен радиус окружности радиус окружности S2?
Прислать комментарий     Решение


Задача 55757

Тема:   [ Гомотетичные окружности ]
Сложность: 3
Классы: 8,9

Докажите, что при гомотетии окружность переходит в окружность.

Прислать комментарий     Решение


Задача 35400

Тема:   [ Гомотетичные окружности ]
Сложность: 3+
Классы: 10,11

Внутри угла расположены две окружности с центрами A, B, которые касаются друг друга и сторон угла. Докажите, что окружность с диаметром AB касается сторон угла.
Прислать комментарий     Решение


Задача 35035

Темы:   [ Гомотетичные окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 4-
Классы: 9,10

На плоскости дана окружность S и фиксирована некоторая дуга AСB (С - точка на дуге AB) этой окружности. Некоторая окружность S' касается хорды AB в точке P и дуги ACB в точке Q. Докажите, что прямые PQ проходят через фиксированную точку плоскости независимо от выбора окружности S'.
Прислать комментарий     Решение


Задача 57989

Тема:   [ Гомотетичные окружности ]
Сложность: 4+
Классы: 9

а) Вписанная окружность треугольника ABC касается стороны AC в точке D, DM — ее диаметр. Прямая BM пересекает сторону AC в точке K. Докажите, что AK = DC.
б) В окружности проведены перпендикулярные диаметры AB и CD. Из точки M, лежащей вне окружности, проведены касательные к окружности, пересекающие прямую AB в точках E и H, а также прямые MC и MD, пересекающие прямую AB в точках F и K. Докажите, что EF = KH.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .