ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]      



Задача 54608

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки впишите в данный угол окружность, проходящую через данную точку.

Прислать комментарий     Решение


Задача 77874

Темы:   [ Гомотетия помогает решить задачу ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Гомотетичные окружности ]
[ Неравенства для элементов треугольника (прочее) ]
[ Прямая Эйлера и окружность девяти точек ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10

Доказать, что в любом треугольнике имеет место неравенство: R$ \ge$2r (R и r — радиусы описанного и вписанного кругов соответственно), причем равенство R = 2r имеет место только для правильного треугольника.
Прислать комментарий     Решение


Задача 54614

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки впишите в данный угол окружность, касающуюся данной окружности.

Прислать комментарий     Решение


Задача 110157

Темы:   [ Производная и кратные корни ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Признаки и свойства касательной ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 5
Классы: 9,10,11

Окружности σ 1 и σ 2 пересекаются в точках A и B . В точке A к σ 1 и σ 2 проведены соответственно касательные l1 и l2 . Точки T1 и T2 выбраны соответственно на окружностях σ 1 и σ 2 так, что угловые меры дуг T1A и AT2 равны (величина дуги окружности считается по часовой стрелке). Касательная t1 в точке T1 к окружности σ 1 пересекает l2 в точке M1 . Аналогично, касательная t2 в точке T2 к окружности σ 2 пересекает l1 в точке M2 . Докажите, что середины отрезков M1M2 находятся на одной прямой, не зависящей от положения точек T1 , T2 .
Прислать комментарий     Решение


Задача 111721

Темы:   [ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Гомотетичные окружности ]
[ Композиции гомотетий ]
[ Гомотетия помогает решить задачу ]
[ Общая касательная к двум окружностям ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 9,10

Даны две окружности. Общая внешняя касательная касается их в точках A и B . Точки X , Y на окружностях таковы, что существует окружность, касающаяся данных в этих точках, причем одинаковым образом (внешним или внутренним). Найдите геометрическое место точек пересечения прямых AX и BY .
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .