ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



Задача 78610

Темы:   [ Наименьший или наибольший угол ]
[ Геометрические неравенства (прочее) ]
Сложность: 4-
Классы: 10,11

Доказать, что в круге радиуса 1 нельзя найти более 5 точек, попарные расстояния между которыми все больше 1.
Прислать комментарий     Решение


Задача 115669

Темы:   [ Теорема косинусов ]
[ Геометрические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

Длины сторон выпуклого четырёхугольника не больше 7. Докажите, что четыре круга с радиусами 5 и центрами в вершинах четырёхугольника полностью покрывают четырёхугольник.
Прислать комментарий     Решение


Задача 97765

Темы:   [ Доказательство от противного ]
[ Классические неравенства (прочее) ]
[ Геометрические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.

Прислать комментарий     Решение

Задача 78140

Темы:   [ Индукция в геометрии ]
[ Метод координат на плоскости ]
[ Геометрические неравенства (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9,10,11

Бесконечная плоская ломаная A0A1...An..., все углы которой прямые, начинается в точке A0 с координатами x = 0, y = 1 и обходит начало координат O по часовой стрелке. Первое звено ломаной имеет длину 2 и параллельно биссектрисе 4-го координатного угла. Каждое из следующих звеньев пересекает одну из координатных осей и имеет наименьшую возможную при этом целочисленную длину. Расстояние OAn = ln. Сумма длин первых n звеньев ломаной равна sn. Доказать, что найдётся n, для которого $ {\frac{s_n}{l_n}}$ > 1958.
Прислать комментарий     Решение


Задача 107844

Темы:   [ Покрытия ]
[ Принцип Дирихле (углы и длины) ]
[ Векторы помогают решить задачу ]
[ Вспомогательные проекции ]
[ Геометрические неравенства (прочее) ]
[ Параллельный перенос (прочее) ]
Сложность: 5+
Классы: 9,10,11

На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.
Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .