ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 78016

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 4
Классы: 9,10

На двух лучах l1 и l2, исходящих из точки O, отложены отрезки OA1 и OB1 на луче l1 и OA2 и OB2 на луче l2; при этом $ {\frac{OA_1}{OA_2}}$$ \ne$$ {\frac{OB_1}{OB_2}}$. Определить геометрическое место точек S пересечения прямых A1A2 и B1B2 при вращении луча l2 около точки O (луч l1 неподвижен).
Прислать комментарий     Решение


Задача 109017

Темы:   [ Окружность Ферма-Аполлония ]
[ ГМТ - окружность или дуга окружности ]
[ Метод координат на плоскости ]
Сложность: 4
Классы: 8,9,10

На плоскости даны точки A и B . Доказать, что множество всех точек M , удалённых от A в 3 раза больше, чем от B , есть окружность.
Прислать комментарий     Решение


Задача 57177

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 4+
Классы: 9

Докажите, что множество точек X, обладающих тем свойством, что  k1A1X2 + ... + knAnX2 = c:
а) при  k1 + ... + kn$ \ne$ 0 является окружностью или пустым множеством;
б) при  k1 + ... + kn = 0 является прямой, плоскостью или пустым множеством.
Прислать комментарий     Решение


Задача 54550

 [Окружность Аполлония.]
Темы:   [ Окружность Ферма-Аполлония ]
[ Отношение, в котором биссектриса делит сторону ]
[ Метод координат на плоскости ]
Сложность: 5-
Классы: 8,9

Найдите геометрическое место точек, расстояния от каждой из которых до двух данных точек относятся как m : n.

Прислать комментарий     Решение


Задача 57178

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 5
Классы: 9

Прямая l пересекает две окружности в четырех точках. Докажите, что четырехугольник, образованный касательными в этих точках, описанный, причем центр его описанной окружности лежит на прямой, соединяющей центры данных окружностей.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .