ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 109035

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Площадь круга, сектора и сегмента ]
[ Покрытия ]
Сложность: 4+
Классы: 9,10,11

Доказать, что существует линия длины +1 , которую нельзя покрыть плоской выпуклой фигурой площади S .
Прислать комментарий     Решение


Задача 111338

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Равносоставленные фигуры ]
[ Площади криволинейных фигур ]
Сложность: 5
Классы: 9,10,11

Покажите, что существует выпуклая фигура, ограниченная дугами окружностей, которую можно разрезать на несколько частей и из них сложить две выпуклые фигуры, ограниченные дугами окружностей.
Прислать комментарий     Решение


Задача 58134

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ Перенос стороны, диагонали и т.п. ]
[ Неравенство треугольника (прочее) ]
[ Принцип Дирихле (углы и длины) ]
[ Площадь многоугольника ]
Сложность: 6+
Классы: 9,10,11

Докажите, что при симметризации по Штейнеру площадь многоугольника не изменяется, а его периметр не увеличивается.
Прислать комментарий     Решение


Задача 116674

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3+
Классы: 7,8,9

На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?

Прислать комментарий     Решение

Задача 97946

Темы:   [ Наименьший или наибольший угол ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 4
Классы: 8,9

Три треугольника – белый, зелёный и красный – имеют общую внутреннюю точку M. Докажите, что можно выбрать по одной вершине из каждого треугольника так, чтобы точка M находилась внутри или на границе треугольника, образуемого выбранными вершинами.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .