ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 116674

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3+
Классы: 7,8,9

На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?

Прислать комментарий     Решение

Задача 97946

Темы:   [ Наименьший или наибольший угол ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 4
Классы: 8,9

Три треугольника – белый, зелёный и красный – имеют общую внутреннюю точку M. Докажите, что можно выбрать по одной вершине из каждого треугольника так, чтобы точка M находилась внутри или на границе треугольника, образуемого выбранными вершинами.

Прислать комментарий     Решение

Задача 35782

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Центральная симметрия помогает решить задачу ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3+
Классы: 8,9,10

На круглой сковороде площади 1 испекли выпуклый блин площади больше 1/2. Докажите, что центр сковороды находится под блином.
Прислать комментарий     Решение


Задача 66239

Темы:   [ Пересекающиеся окружности ]
[ Комбинаторная геометрия (прочее) ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
[ Внутренность и внешность. Лемма Жордана ]
Сложность: 4
Классы: 9,10,11

Сколько (максимум) кругов можно расположить на плоскости так, чтобы каждые два из них пересекались, а никакие три – нет?

Прислать комментарий     Решение

Задача 98269

Темы:   [ Наглядная геометрия в пространстве ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 10,11

Существует ли такой невыпуклый многогранник, что из некоторой точки М, лежащей вне него, не видна ни одна из его вершин?
(Многогранник сделан из непрозрачного материала, так что сквозь него ничего не видно.)

 
Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .