ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 73742

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Наибольшая или наименьшая длина ]
[ Поворот помогает решить задачу ]
[ Подобные треугольники (прочее) ]
Сложность: 5+
Классы: 9,10,11

Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2).

Прислать комментарий     Решение

Задача 57529

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5+
Классы: 8,9,10

Какую наименьшую ширину должна иметь бесконечная полоса бумаги, из которой можно вырезать любой треугольник площадью 1?
Прислать комментарий     Решение


Задача 116173

Темы:   [ Пересекающиеся окружности ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 3+
Классы: 9,10,11

Две окружности пересекаются в точках P и Q. Tочка A лежит на первой окружности, но вне второй. Прямые AP и AQ пересекают вторую окружность в точках B и C соответственно. Укажите положение точки A, при котором треугольник ABC имеет наибольшую площадь.

Прислать комментарий     Решение

Задача 55238

Темы:   [ Вспомогательные подобные треугольники ]
[ Экстремальные свойства треугольника (прочее) ]
[ Неравенство Коши ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника.

Прислать комментарий     Решение

Задача 116995

Темы:   [ Треугольники с углами 60° и 120° ]
[ Экстремальные свойства треугольника (прочее) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Признаки подобия ]
[ Точка Торричелли ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

В треугольнике ABC угол B равен 60°. Точка D внутри треугольника такова, что  ∠ADB = ∠ADC = ∠BDC.
Найдите наименьшее значение площади треугольника ABC, если  BD = a.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .