ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 73552

Темы:   [ Против большей стороны лежит больший угол ]
[ Экстремальные свойства треугольника (прочее) ]
[ Теорема косинусов ]
[ Неравенство треугольника (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 5-
Классы: 9,10

  Крестьянин, подойдя к развилке двух дорог, расходящихся под углом 60°, спросил: "Как пройти в село NN?" Ему ответили: "Иди по левой дороге до деревни N – это в 8 верстах отсюда, – там увидишь, что направо под прямым углом отходит большая ровная дорога – это как раз дорога в NN. А можешь идти другим путём: сейчас по правой дороге; как выйдешь к железной дороге, – значит, половину пути прошёл; тут поверни налево и иди прямо по шпалам до самого NN". – "Ну, а какой путь короче-то будет?" – "Да всё равно, что так, что этак, никакой разницы". И пошёл крестьянин по правой дороге.
  Сколько вёрст ему придётся идти до NN? Больше десяти или меньше? А если идти от развилки до NN напрямик? (Все дороги прямые.)
Прислать комментарий     Решение


Задача 55237

Темы:   [ Неравенство Коши ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

Высота прямоугольного треугольника, опущенная на гипотенузу, равна h.
Какую наименьшую длину может иметь медиана, проведённая из вершины большего острого угла?

Прислать комментарий     Решение

Задача 102506

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вспомогательная окружность ]
[ Экстремальные свойства треугольника (прочее) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9

Площадь треугольника ABC равна 10 см². Какое наименьшее значение может принимать радиус описанной окружности треугольника ABC, если известно, что середины высот этого треугольника лежат на одной прямой?

Прислать комментарий     Решение

Задача 115903

Темы:   [ Пересекающиеся окружности ]
[ Окружности (построения) ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние.

Прислать комментарий     Решение

Задача 102505

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

Середины высот треугольника ABC лежат на одной прямой. Наибольшая сторона треугольника  AB = 10 см.
Какое максимальное значение может принимать площадь треугольника ABC?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .