ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 108]      



Задача 115976

Темы:   [ Вневписанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 7,8,9

Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.

Прислать комментарий     Решение

Задача 53730

Темы:   [ Вневписанные окружности ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

Прислать комментарий     Решение

Задача 78044

Темы:   [ Вневписанные окружности ]
[ Неравенства для углов треугольника ]
Сложность: 3
Классы: 8,9

Дан $ \Delta$ABC. Центры вневписанных окружностей O1, O2 и O3 соединены прямыми. Доказать, что $ \Delta$O1O2O3 — остроугольный.
Прислать комментарий     Решение


Задача 108941

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Пусть вневписанные окружности треугольника, касающиеся сторон AC и BC , касаются прямой AB в точках P и Q соответственно. Докажите, что середина стороны AB совпадает с серединой отрезка PQ .
Прислать комментарий     Решение


Задача 111440

Темы:   [ Вневписанные окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Острый угол прямоугольного треугольника равен α , а радиус окружности, касающейся гипотенузы и продолжений двух катетов, равен R . Найдите длину гипотенузы этого треугольника.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 108]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .