ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 117]      



Задача 52729

Темы:   [ Вневписанные окружности ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 8,9

Радиус вписанной в треугольник ABC окружности равен $ \sqrt{3}$ - 1. Угол BAC равен 60o, а радиус окружности, касающейся стороны BC и продолжений сторон AB и AC, равен $ \sqrt{3}$ + 1. Найдите углы ABC и ACB данного треугольника.

Прислать комментарий     Решение


Задача 55381

Темы:   [ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

Продолжение биссектрисы угла B треугольника ABC пересекает описанную окружность в точке M; O — центр вписанной окружности, O1 — центр вневписанной окружности, касающейся стороны AC. Докажите, что точки A, C, O и O1 лежат на окружности с центром в точке M.

Прислать комментарий     Решение


Задача 55538

Темы:   [ Вневписанные окружности ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Сторона квадрата ABCD равна 1. На сторонах AB и AD выбраны точки P и Q, причём периметр треугольника APQ равен 2. Докажите, что $ \angle$PCQ = 45o.

Прислать комментарий     Решение


Задача 116070

Темы:   [ Вневписанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

На сторонах AB и CD квадрата ABCD взяты точки K и M соответственно, а на диагонали AC – точка L так, что ML = KL. Пусть P – точка пересечения отрезков MK и BD. Найдите угол KPL.

Прислать комментарий     Решение

Задача 65645

Темы:   [ Вневписанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4+
Классы: 8,9,10

Точки IA, IB, IC – центры вневписанных окружностей треугольника ABC, касающихся сторон BC, AC и AB соответственно. Перпендикуляр, опущенный из IA на AC, пересекает перпендикуляр, опущенный из IB на BC, в точке XC. Аналогично определяются точки XA и XB. Докажите, что прямые IAXA, IBXB и ICXC пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 117]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .