ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 289]      



Задача 115295

Темы:   [ Вспомогательная окружность ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

На гипотенузе BC прямоугольного треугольника ABC отмечены такие точки D и E, что  ADBC  и  AD = DE.  На стороне AC отмечена такая точка F, что  EFBC.  Найдите угол ABF.

Прислать комментарий     Решение

Задача 115617

Темы:   [ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Углы между биссектрисами ]
Сложность: 3+
Классы: 8,9

D и E – точки касания окружности, вписанной в треугольник ABC, со сторонами BC и AC. На биссектрису угла A опустили перпендикуляр BK. Докажите, что точки D, E и K лежат на одной прямой.

Прислать комментарий     Решение

Задача 115667

Темы:   [ Вспомогательная окружность ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Окружность, вписанная в угол ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Окружность с центром O касается сторон угла в точках A и B. Через произвольную точку M отрезка AB, отличную от точек A и B, проведена прямая, перпендикулярная прямой OM и пересекающая стороны угла в точках C и D. Докажите, что  MC = MD.

Прислать комментарий     Решение

Задача 115730

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9,10

Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD в точках C и D, соответственно пересекаются в точке Q .
Докажите, что прямые AB и PQ перпендикулярны.

Прислать комментарий     Решение

Задача 52834

Темы:   [ Вспомогательная окружность ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

На стороне AB треугольника ABC во внешнюю сторону построен равносторонний треугольник. Найдите расстояние между его центром и вершиной C, если AB = c и $ \angle$C = 120o.

Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .