ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 289]      



Задача 108643

Темы:   [ Вспомогательная окружность ]
[ Вспомогательные равные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD известно, что  ∠A + ∠D = 120°  и  AB = BC = CD.
Докажите, что точка пересечения диагоналей равноудалена от вершин A и D.

Прислать комментарий     Решение

Задача 108649

Темы:   [ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Пятиугольники ]
[ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

В выпуклом пятиугольнике ABCDE  AB = BC,  ∠ABE + ∠DBC = ∠EBD  и   ∠AEB + ∠BDC = 180°.
Докажите, что ортоцентр треугольника BDE лежит на диагонали AC.

Прислать комментарий     Решение

Задача 111597

Темы:   [ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Треугольник ABC вписан в окружность с центром O, X – произвольная точка внутри треугольника ABC, для которой  ∠XAB = ∠XBC = φ,  а P – такая точка, что  PXOX,  ∠XOP = φ,  причём углы XOP и XAB одинаково ориентированы. Докажите, что все такие точки P лежат на одной прямой.

Прислать комментарий     Решение

Задача 115351

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Четырёхугольник ABCD вписан в окружность с диаметром AC. Точки K и M – проекции вершин A и C соответственно на прямую BD. Через точку K проведена прямая, параллельная BC и пересекающая AC в точке P. Докажите, что угол KPM – прямой.

Прислать комментарий     Решение

Задача 52865

Темы:   [ Вспомогательная окружность ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

Каждое из оснований высот треугольника проецируется на его стороны. Докажите, что длина отрезка, соединяющего эти проекции не зависит от выбора высоты.

Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .