ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 289]      



Задача 52503

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Диагонали выпуклого четырёхугольника взаимно перпендикулярны. Докажите, что четыре проекции точки пересечения диагоналей на стороны четырёхугольника лежат на одной окружности.

Прислать комментарий     Решение


Задача 52824

Темы:   [ Вспомогательная окружность ]
[ ГМТ и вписанный угол ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 8,9

Две окружности S1 и S2 с центрами O1 и O2 пересекаются в точке A. Прямая O1A пересекает окружность S2 в точке K2, а прямая O2A пересекает окружность S1 в точке K1. Докажите, что $ \angle$O1O2A = $ \angle$K1K2A.

Прислать комментарий     Решение


Задача 52836

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В треугольнике ABC известно, что B = 50o , C = 70o . Найдите углы треугольника OHC , где H — точка пересечения высот, O — центр окружности, описанной около треугольника ABC .
Прислать комментарий     Решение


Задача 52850

Темы:   [ Вспомогательная окружность ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Четыре точки, лежащие на одной окружности ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4
Классы: 8,9

В прямоугольнике ABCD опущен перпендикуляр BK на диагональ AC. Точки M и N – середины отрезков AK и CD соответственно.
Докажите, что угол BMN – прямой.

Прислать комментарий     Решение

Задача 52854

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Дан угол, равный $ \alpha$. На его биссектрисе взята точка K; P и M — проекции K на стороны угла. На отрезке PM взята точка A такая, что KA = a. Прямая, проходящая через A перпендикулярно KA, пересекает стороны угла в точках B и C. Найдите площадь треугольника BKC.

Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .