ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 289]      



Задача 108946

Темы:   [ Вспомогательная окружность ]
[ Описанные четырехугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

В остроугольном треугольнике проведены высоты AA1 , BB1 , CC1 . На стороне BC взята точка K , для которой BB1K = BAC , а на стороне AB – точка M , для которой BB1M = ACB ; L – точка пересечения высоты BB1 и отрезка A1C1 . Докажите, что четырёхугольник B1KLM – описанный.
Прислать комментарий     Решение


Задача 110199

Темы:   [ Вспомогательная окружность ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 9,10,11

AA1 и BB1 – высоты остроугольного неравнобедренного треугольника ABC. Известно, что отрезок A1B1 пересекает среднюю линию, параллельную AB, в точке C'. Докажите, что отрезок CC' перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 110863

Темы:   [ Вспомогательная окружность ]
[ Углы между биссектрисами ]
Сложность: 4
Классы: 8,9

Точки B1 и C1 расположены на сторонах соответственно AC и AB треугольника ABC . Отрезки BB1 и CC1 пересекаются в точке P ; O – центр вписанной окружности треугольника AB1C1 , M – точка касания этой окружности с отрезком B1C1 . Известно, что прямые OP и BB1 перпендикулярны. Докажите, что AOC1 = MPB1 .
Прислать комментарий     Решение


Задача 110864

Темы:   [ Вспомогательная окружность ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Биссектрисы внешних углов при вершинах B и C трапеции ABCD ( BC || AD ) пересекаются в точке P , а биссектрисы внешних углов при вершинах A и D – в точке Q . Прямые PB и PC пересекают прямую AD в точке E и F соответственно. Прямые AP и EQ пересекаются в точке M , а прямые PD и FQ – в точке N . Докажите, что MN || AD .
Прислать комментарий     Решение


Задача 115285

Темы:   [ Вспомогательная окружность ]
[ Симметрия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности и секущая, пересекающая окружность в точках D и E ; M — середина отрезка BC . Докажите, что BM2 = DM· ME и угол DME в два раза больше угла DBE или угла DCE ; кроме того, BEM = DEC .
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .