ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 82]      



Задача 53712

Темы:   [ Признаки и свойства касательной ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

Из конца A диаметра AC окружности опущен перпендикуляр AP на касательную, проведённую через лежащую на окружности точку B, отличную от A и C. Докажите, что AB – биссектриса угла PAC.

Прислать комментарий     Решение

Задача 54780

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

Из точки O на плоскости выходят 4 луча, следующие друг за другом по часовой стрелке: OA, OB, OC и OD. Известно, что сумма углов AOB и COD равна 180°. Докажите, что биссектрисы углов AOC и BOD перпендикулярны.

Прислать комментарий     Решение

Задача 65216

Темы:   [ Задачи на движение ]
[ Биссектриса угла ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3
Классы: 7,8

В некоторый момент угол между часовой и минутной стрелками равен α. Через час он опять равен α. Найдите все возможные значения α.

Прислать комментарий     Решение

Задача 65961

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 9,10

В равнобедренном треугольнике АВС с основанием ВС проведена биссектриса CL. Докажите, что  CL < 2BL.

Прислать комментарий     Решение

Задача 66288

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8,9

Можно ли разрезать треугольник на три выпуклых многоугольника с попарно различным количеством сторон?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .