ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]      



Задача 30433

Темы:   [ Полуинварианты ]
[ Разные задачи на разрезания ]
[ Игры-шутки ]
Сложность: 2
Классы: 6,7,8

Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?
Прислать комментарий     Решение


Задача 35445

Тема:   [ Полуинварианты ]
Сложность: 2+
Классы: 7,8

В стране несколько городов, попарные расстояния между которыми различны. Путешественник отправился из города А в самый удаленный от него город Б, оттуда - в самый удаленный от него город С и т.д. Докажите, что если С не совпадает с А, то путешественник никогда не вернется в А.
Прислать комментарий     Решение


Задача 35544

Темы:   [ Полуинварианты ]
[ Процессы и операции ]
Сложность: 2+
Классы: 7,8,9

Шоколадка имеет размер 4×10 плиток. За один ход разрешается разломать один из уже имеющихся кусочков на два вдоль прямолинейного разлома. За какое наименьшее число ходов можно разбить всю шоколадку на кусочки размером в одну плитку?
Прислать комментарий     Решение


Задача 35493

Тема:   [ Полуинварианты ]
Сложность: 2+
Классы: 8,9

В каждой из n стран правит либо партия правых, либо партия левых. Каждый год в одной из стран A может поменяться власть. Это может произойти в том случае, если в большинстве граничащих со страной А стран правит не та партия, которая правит в стране А. Докажите, что смены правительств не могут продолжаться бесконечно.
Прислать комментарий     Решение


Задача 109960

Темы:   [ Полуинварианты ]
[ Процессы и операции ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 8

В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по одной карте. Вынутые карты в колоду не возвращаются. Каждый раз перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть. Докажите, что если Ваня каждый раз будет загадывать масть, карт которой в колоде осталось не меньше, чем карт любой другой масти, то загаданная масть совпадет с мастью вынутой карты не менее 13 раз.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .