ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 140]      



Задача 116119

Темы:   [ Поворот помогает решить задачу ]
[ Повороты на 60° и 120° ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 8,9

Шестиугольник ABCDEF — правильный, K и M — середины отрезков BD и EF . Докажите, что треугольник AMK — правильный.
Прислать комментарий     Решение


Задача 55721

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на 90° ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Применение тригонометрических формул (геометрия) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

В квадрате ABCD точки K и M принадлежат сторонам BC и CD соответственно, причём AM – биссектриса угла KAD.
Докажите, что  AK = DM + BK.

Прислать комментарий     Решение

Задача 116120

Темы:   [ Поворот помогает решить задачу ]
[ Повороты на 60° и 120° ]
[ Правильные многоугольники ]
[ Шестиугольники ]
Сложность: 3+
Классы: 8,9

Пусть M и N — середины сторон CD и DE правильного шестиугольника ABCDEF. Найдите угол между прямыми AM и BN.

Прислать комментарий     Решение

Задача 55676

Темы:   [ Поворот помогает решить задачу ]
[ Построения ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки через точку внутри данного круга проведите хорду, отсекающую от окружности дугу заданной угловой величины.

Прислать комментарий     Решение


Задача 55373

Темы:   [ Поворот помогает решить задачу ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Правильные многоугольники ]
[ Векторы сторон многоугольников ]
[ Центр масс ]
Сложность: 4-
Классы: 8,9,10

Пусть О – центр правильного многоугольника A1A2A3...AnX – произвольная точка плоскости. Докажите, что:
   a)  


   б)   

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 140]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .