ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 140]      



Задача 57921

Темы:   [ Поворот на 90° ]
[ Поворот помогает решить задачу ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)
Прислать комментарий     Решение


Задача 111710

Темы:   [ Поворот на 90° ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Четырехугольники (построения) ]
Сложность: 4-
Классы: 8,9

Постройте квадрат ABCD , если даны его вершина A и расстояния от вершин B и D до фиксированной точки плоскости O .
Прислать комментарий     Решение


Задача 52355

Темы:   [ Правильный (равносторонний) треугольник ]
[ Поворот помогает решить задачу ]
[ Повороты на 60° и 120° ]
[ Теорема косинусов ]
[ Теорема Птолемея ]
Сложность: 4-
Классы: 8,9,10

На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Докажите, что AP = BP + CP.

Прислать комментарий     Решение


Задача 55722

Темы:   [ Удвоение медианы ]
[ Поворот помогает решить задачу ]
[ Перпендикулярные прямые ]
Сложность: 4-
Классы: 8,9

Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)

Прислать комментарий     Решение

Задача 56498

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Поворот помогает решить задачу ]
[ Средняя линия трапеции ]
Сложность: 4-
Классы: 8,9

На катетах CA и CB равнобедренного прямоугольного треугольника ABC выбраны точки D и E так, что  CD = CE.  Продолжения перпендикуляров, опущенных из точек D и C на прямую AE, пересекают гипотенузу AB в точках K и L. Докажите, что  KL = LB.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 140]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .