ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 297]      



Задача 52770

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средняя линия треугольника ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В четырёхугольнике ABCD  ∠DAB = ∠DBC = 90°. Кроме того,  DB = a,  DC = b.
Найдите расстояние между центрами двух окружностей, одна из которых проходит через точки D, A, B, а другая – через точки B, C, D.

Прислать комментарий     Решение

Задача 52897

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

Радиус окружности равен R. Найдите хорду, проведённую из конца данного диаметра через середину перпендикулярного к нему радиуса.

Прислать комментарий     Решение

Задача 52944

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке K . Найдите площадь треугольника CKB , если катет BC равен a и катета AC равен b .
Прислать комментарий     Решение


Задача 53205

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Биссектриса угла (ГМТ) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Дан прямоугольный треугольник ABC с прямым углом при вершине C. ∠A = α,  биссектриса угла B пересекает катет AC в точке K. На стороне BC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке M. Найдите угол AMK.

Прислать комментарий     Решение

Задача 53516

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные подобные треугольники ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

В трапеции ABCD диагональ AC перпендикулярна боковой стороне CD, а диагональ DB перпендикулярна боковой стороне AB. Продолжения боковых сторон AB и DC пересекаются в точке K, образуя треугольник AKD с углом 45° при вершине K. Площадь трапеции ABCD равна P. Найдите площадь треугольника AKD.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 297]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .