ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 156]      



Задача 56452

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки подобия ]
Сложность: 2
Классы: 8,9

В прямоугольном треугольнике ABC с прямым углом C проведена высота  CH. Докажите, что  AC² = AB·AH  и  CH² = AH·BH.

Прислать комментарий     Решение

Задача 56475

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 2
Классы: 9

На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что   ∠AB2C = ∠AC2B = 90°.  Докажите, что  AB2 = AC2.

Прислать комментарий     Решение

Задача 54191

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит гипотенузу на отрезки, равные a и b. Найдите катеты.

Прислать комментарий     Решение


Задача 54237

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Катеты прямоугольного треугольника относятся как 5:6, а гипотенуза равна 122. Найдите отрезки, на которые высота делит гипотенузу.

Прислать комментарий     Решение


Задача 54239

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 8,9

Катеты прямоугольного треугольника относятся как 3:7, а высота, опущенная на гипотенузу, равна 42. Найдите отрезки, на которые высота делит гипотенузу.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 156]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .