ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]      



Задача 108807

Темы:   [ Линейные зависимости векторов ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 2
Классы: 8,9

Все рёбра правильной четырёхугольной пирамиды равны. Найдите угол между противоположными боковыми рёбрами.
Прислать комментарий     Решение


Задача 86910

Темы:   [ Правильный тетраэдр ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

Найдите угол между двумя скрещивающимися медианами двух боковых граней правильного тетраэдра.
Прислать комментарий     Решение


Задача 86913

Темы:   [ Линейные зависимости векторов ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите расстояние между диагональю основания и скрещивающимся с ней боковым ребром.
Прислать комментарий     Решение


Задача 87006

Темы:   [ Свойства сечений ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

Угол между противоположными рёбрами AB и CD пирамиды ABCD равен α , AB = a , CD = b . Найдите площадь сечения пирамиды плоскостью, проходящей через середину ребра BC параллельно прямым AB и CD .
Прислать комментарий     Решение


Задача 87053

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

Три отрезка, не лежащие в одной плоскости, пересекаются в одной точке и делятся ею пополам. Докажите, что существуют ровно два тетраэдра, в которых эти отрезки соединяют середины противоположных рёбер.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .