ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 87237

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Признаки перпендикулярности ]
Сложность: 3
Классы: 8,9

Докажите, что через одну из двух перпендикулярных скрещивающихся прямых можно провести единственную плоскость, перпендикулярную другой прямой.
Прислать комментарий     Решение


Задача 87247

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Признаки перпендикулярности ]
Сложность: 3
Классы: 8,9

Даны две неперпендикулярные скрещивающиеся прямые. Можно ли через одну из них провести плоскость, перпендикулярную другой?
Прислать комментарий     Решение


Задача 108762

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите расстояние между противоположными рёбрами пирамиды.
Прислать комментарий     Решение


Задача 108772

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол 45o . Найдите расстояние между боковым ребром и скрещивающейся с ним диагональю основания.
Прислать комментарий     Решение


Задача 109044

Тема:   [ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 10,11

На одной из двух скрещивающихся прямых взяли различные точки A и A1 , на другой – различные точки B и B1 . Верно ли, что AB и A1B1 – скрещивающиеся прямые?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .