ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 14]      



Задача 109302

Темы:   [ Окружности на сфере ]
[ Кратчайший путь по поверхности ]
Сложность: 3
Классы: 10,11

Сфера радиуса 2 пересечена плоскостью, удалённой от центра на расстояние 1. Найдите длину кратчайшего пути по поверхности сферы между двумя наиболее удалёнными точками сечения.
Прислать комментарий     Решение


Задача 35086

Темы:   [ Окружности на сфере ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Итак, Чукча выходит каждый день на охоту по следующему маршруту: 10 км на юг, 10 км на восток, 10 км на север (На запад чукча не ходит) И хоп! Оказывается перед своим чумом. "Однако!" говорит чукча. Теперь вопрос: найти Геометрическое Место Точек, где может находиться чум чукчи.
Прислать комментарий     Решение


Задача 104040

Темы:   [ Окружности на сфере ]
[ ГМТ в пространстве (прочее) ]
Сложность: 4
Классы: 7,8,9,10

Турист вышел утром из палатки, прошел 10 км на юг, потом 10 км на восток, 10 км на север и оказался у своей палатки. В палатке он обнаружил медведя.
а) Какого цвета был медведь?
б) Мог ли там оказаться не медведь, а пингвин?
Прислать комментарий     Решение


Задача 65738

Темы:   [ Окружности на сфере ]
[ Правильные многогранники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

На сферической планете с длиной экватора 1 планируют проложить N кольцевых дорог, каждая из которых будет идти по окружности длины 1. Затем по каждой дороге запустят несколько поездов. Все поезда будут ездить по дорогам с одной и той же положительной постоянной скоростью, никогда не останавливаясь и не сталкиваясь. Какова в таких условиях максимально возможная суммарная длина всех поездов? Поезда считайте дугами нулевой толщины, из которых выброшены концевые точки. Решите задачу в случаях:  а)  N = 3;  б)  N = 4.
Прислать комментарий     Решение


Задача 98098

Темы:   [ Окружности на сфере ]
[ Отношение эквивалентности. Классы эквивалентности ]
[ Системы отрезков, прямых и окружностей ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 10,11

На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
  б) Та же задача для n отмеченных точек.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .