ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 64748

Темы:   [ Правильные многогранники (прочее) ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Каждый из двух правильных многогранников P и Q разрезали плоскостью на две части. Одну из частей P и одну из частей Q приложили друг к другу по плоскости разреза. Может ли получиться правильный многогранник, не равный ни одному из исходных, и если да, то сколько у него может быть граней?

Прислать комментарий     Решение

Задача 98053

Темы:   [ Правильные многогранники (прочее) ]
[ Остовы многогранных фигур ]
[ Связность и разложение на связные компоненты ]
Сложность: 4
Классы: 10,11

Какое минимальное количество точек на поверхности
   а) додекаэдра,
   б) икосаэдра
надо отметить, чтобы на каждой грани была хотя бы одна отмеченная точка?

Прислать комментарий     Решение

Задача 65858

Темы:   [ Правильные многогранники (прочее) ]
[ Четность и нечетность ]
[ Инварианты ]
[ Четность перестановки ]
Сложность: 5-
Классы: 9,10,11

Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.
Докажите, что некоторое ребро муравей оба раза проходит в одном и том же направлении.

Прислать комментарий     Решение

Задача 65738

Темы:   [ Окружности на сфере ]
[ Правильные многогранники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

На сферической планете с длиной экватора 1 планируют проложить N кольцевых дорог, каждая из которых будет идти по окружности длины 1. Затем по каждой дороге запустят несколько поездов. Все поезда будут ездить по дорогам с одной и той же положительной постоянной скоростью, никогда не останавливаясь и не сталкиваясь. Какова в таких условиях максимально возможная суммарная длина всех поездов? Поезда считайте дугами нулевой толщины, из которых выброшены концевые точки. Решите задачу в случаях:  а)  N = 3;  б)  N = 4.
Прислать комментарий     Решение


Задача 76444

Темы:   [ Свойства сечений ]
[ Правильные многогранники (прочее) ]
[ Перебор случаев ]
Сложность: 6+
Классы: 10,11

В пространстве расположен правильный додекаэдр. Сколькими способами можно провести плоскость так, чтобы она высекла на додекаэдре правильный шестиугольник?
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .