ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 61543

Темы:   [ Задачи-шутки ]
[ Ряды (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

Обозначим через S сумму следующего ряда:

S = 1 - 1 + 1 - 1 + 1 -... (12.1)

Преобразовав равенство (12.1 ), можно получить уравнение, из которого находится S:

S = 1 - (1 - 1 + 1 - 1 +...) = 1 - S $\displaystyle \Rightarrow$ S = $\displaystyle {\textstyle\frac{1}{2}}$.

Сумму S можно также найти объединяя слагаемые ряда (12.1 ) в пары:

S = (1 - 1) + (1 - 1) +...= 0 + 0 +...= 0;
S = 1 - (1 - 1) - (1 - 1) -...= 1 - 0 - 0 -...= 1.

Наконец, переставив местами соседние слагаемые, получаем еще одно значение S:

S = - 1 + 1 - 1 + 1 - 1 +...= - 1 + (1 - 1) + (1 - 1) +...= - 1.

Итак, действуя четырьмя разными способами, мы нашли четыре значения суммы S:

S = $\displaystyle {\textstyle\frac{1}{2}}$ = 0 = 1 = - 1.

Какое же значение имеет сумма S в действительности?
Прислать комментарий     Решение

Задача 88296

Темы:   [ Классические неравенства ]
[ Ряды с неотрицательными членами ]
Сложность: 4+
Классы: 7,8,9

Найдется ли такое n, при котором   ?   А больше 1000?

Прислать комментарий     Решение

Задача 60427

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Ряды (прочее) ]
Сложность: 4+
Классы: 10,11

Найдите суммы рядов
а) $ {\dfrac{1}{1\cdot 2}}$ + $ {\dfrac{1}{2\cdot 3}}$ + $ {\dfrac{1}{3\cdot
4}}$ + $ {\dfrac{1}{4\cdot 5}}$ +...;
б) $ {\dfrac{1}{1\cdot 2\cdot3}}$ + $ {\dfrac{1}{2\cdot
3\cdot4}}$ + $ {\dfrac{1}{3\cdot 4\cdot5}}$ + $ {\dfrac{1}{4\cdot
5\cdot6}}$ +...;
в) $ {\dfrac{0!}{r!}}$ + $ {\dfrac{1!}{(r-1)!}}$ + $ {\dfrac{2!}{(r-2)!}}$ + $ {\dfrac{3!}{(r-3)!}}$ +...      (r $ \geqslant$ 2) .

Прислать комментарий     Решение

Задача 60549

Темы:   [ Количество и сумма делителей числа ]
[ Ряды (прочее) ]
Сложность: 5-
Классы: 11

Может ли быть так, что   а)  σ(n) > 3n;   б)  σ(n) > 100n?

Прислать комментарий     Решение

Задача 116701

Темы:   [ Покрытия ]
[ Примеры и контрпримеры. Конструкции ]
[ Ряды с неотрицательными членами ]
Сложность: 5
Классы: 11

Про бесконечный набор прямоугольников известно, что в нём для любого числа S найдутся прямоугольники суммарной площади больше S.

а) Обязательно ли этим набором можно покрыть всю плоскость, если при этом допускаются наложения?

б) Тот же вопрос, если дополнительно известно, что все прямоугольники в наборе являются квадратами.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .