ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 110153

Темы:   [ Тригонометрические неравенства ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11

Сумма положительных чисел a, b, c равна π/2. Докажите, что  cos a + cos b + cos c > sin a + sin b + sin c.

Прислать комментарий     Решение

Задача 64729

Темы:   [ Тригонометрические неравенства ]
[ Возрастание и убывание. Исследование функций ]
[ Производная и экстремумы ]
Сложность: 4-
Классы: 10,11

Найдите все такие a и b, что    и при всех x выполнено неравенство  |a sin x + b sin 2x| ≤ 1.

Прислать комментарий     Решение

Задача 65480

Темы:   [ Тригонометрические уравнения ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 4-
Классы: 10,11

Решите уравнение  2 sin πx/2 – 2 cos πx = x5 + 10x – 54.

Прислать комментарий     Решение

Задача 116704

Темы:   [ Двоичная система счисления ]
[ Возрастание и убывание. Исследование функций ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 11

Учитель написал на доске в алфавитном порядке все возможные 2n слов, состоящих из n букв А или Б. Затем он заменил каждое слово на произведение n множителей, исправив каждую букву А на x, а каждую букву Б – на  (1 – x),  и сложил между собой несколько первых из этих многочленов от x. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке  [0, 1]  функцию от x.

Прислать комментарий     Решение

Задача 35541

Темы:   [ Показательные уравнения ]
[ Возрастание и убывание. Исследование функций ]
[ Корни. Степень с рациональным показателем (прочее) ]
Сложность: 4+
Классы: 10,11

Решите уравнение $2x^x=\sqrt{2}$ в положительных числах.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .