ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 124]      



Задача 110862

Темы:   [ Описанные четырехугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Окружность с центром O , вписанная в равнобедренный треугольник ABC , касается боковых сторон AB и BC в точках P и Q соответственно. Докажите, что в четырёхугольник BPOQ можно вписать окружность, и найдите угол ABC , если известно, что радиус этой окружности вдвое меньше радиуса вписанной окружности треугольника ABC .
Прислать комментарий     Решение


Задача 110865

Темы:   [ Описанные четырехугольники ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружность с центром O , вписанная в четырёхугольник ABCD , касается сторон AB , BC , CD и AD в точках K , L , M и N соответственно. Отрезок KN делит OA пополам, отрезок KL делит OB пополам, а отрезок MN делит OD в отношении 1:3, считая от точки O . Найдите углы четырёхугольника ABCD .
Прислать комментарий     Решение


Задача 116505

Темы:   [ Описанные четырехугольники ]
[ Признаки подобия ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9,10

Через центр вписанной окружности четырёхугольника ABCD проведена прямая. Она пересекает сторону AB в точке X и сторону CD в точке Y; известно, что  ∠AXY = ∠DYX.  Докажите, что  AX : BX = CY : DY.

Прислать комментарий     Решение

Задача 55449

Темы:   [ Описанные четырехугольники ]
[ Окружность, вписанная в угол ]
Сложность: 3
Классы: 8,9

Четырёхугольник ABCD описан около окружности с центром O. Докажите, что $ \angle$AOB + $ \angle$COD = 180o.

Прислать комментарий     Решение


Задача 52752

Темы:   [ Описанные четырехугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

В четырёхугольнике ABCD расположены две непересекающиеся окружности так, что одна из них касается сторон AB, BC и CD, а другая – сторон AB, AD и CD. Прямая MN пересекает стороны AB и CD соответственно в точках M и N и касается обеих окружностей. Найдите расстояние между центрами окружностей, если периметр четырёхугольника MBCN равен 2p,  BC = a  и разность радиусов окружностей равна r.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 124]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .