ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 93]      



Задача 110263

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Точка M находится на расстоянии a от плоскости α и на расстоянии b от некоторой прямой m этой плоскости. Пусть M1 – ортогональная проекция точки M на плоскость α . Найдите расстояние от точки M1 до прямой m .
Прислать комментарий     Решение


Задача 110449

Темы:   [ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Из точки M на плоскость α опущен перпендикуляр MH длины и проведены две наклонные, составляющие с перпендикуляром углы по 60o . Угол между наклонными равен 120o . а) Найдите расстояние между основаниями A и B наклонных. б) На отрезке AB как на катете в плоскости α построен прямоугольный треугольник ABC (угол A – прямой). Найдите объём пирамиды MABC , зная, что cos BMC = - .
Прислать комментарий     Решение


Задача 110450

Темы:   [ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Из точки M на плоскость α опущен перпендикуляр MH длины 3 и проведены две наклонные, составляющие с перпендикуляром углы по 30o . Угол между наклонными равен 60o . а) Найдите расстояние между основаниями A и B наклонных. б) На отрезке AB как на катете в плоскости α построен прямоугольный треугольник ABC (угол A – прямой). Найдите объём пирамиды MABC , зная, что cos BCM = .
Прислать комментарий     Решение


Задача 87424

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 3+
Классы: 10,11


Основанием пирамиды служит прямоугольник, площадь которого равна S. Две боковые грани перпендикулярны плоскости основания, а две другие наклонены к ней под углами, равными 30o и 60o. Найдите объем пирамиды.

Прислать комментарий     Решение


Задача 86970

Темы:   [ Теорема о трех перпендикулярах ]
[ Высота пирамиды (тетраэдра) ]
Сложность: 4-
Классы: 10,11


Боковые грани треугольной пирамиды образуют равные углы с плоскостью основания. Докажите, что высота пирамиды проходит либо через центр окружности, вписанной в треугольник основания, либо через центр одной из вневписанных окружностей этого треугольника.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .