ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 103021
Темы:    [ Периодичность и непериодичность ]
[ Деление с остатком ]
Сложность: 2
Классы: 5,6,7
В корзину
Прислать комментарий

Условие

Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 2004-м?


Подсказка

Заметьте, с некоторого момента начнет повторяться группа из восьми пальцев: безымянный, средний, указательный, большой, указательный, средний, безымянный, мизинец.


Решение

Первый палец – мизинец, а затем все время повторяется группа из восьми пальцев: безымянный, средний, указательный, большой, указательный, средний, безымянный, мизинец. Когда мы станем перечислять пальцы, первым будет мизинец, затем 250 раз повторится группа из восьми пальцев, а потом – последние два. Второй палец в нашем списке – средний.


Ответ

Средний.

Источники и прецеденты использования

кружок
Место проведения МЦНМО
класс
Класс 5
год
Год 2004/2005
занятие
Номер 12
задача
Номер 12.7

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .