ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 103777
Темы:    [ Наглядная геометрия в пространстве ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Раскраски ]
[ Куб ]
Сложность: 2
Классы: 7
В корзину
Прислать комментарий

Условие

Автор: Ботин Д.А.

Составьте куб 3×3×3 из красных, жёлтых и зелёных кубиков 1×1×1 так, чтобы в любом бруске 3×1×1 были кубики всех трёх цветов.


Ответ

Раскраска по слоям:

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 1994
класс
1
Класс 6
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .